For a full list of publications, please, follow the link.
33. Camarero‐Espinosa S, Yuan H, Emans PJ, Moroni L. Mimicking the graded wavy structure of anterior cruciate ligament. Advanced Healthcare Materials 2023; 2203023. https://doi.org/10.1002/adhm.202203023
32. Tomasina C, Montalbano G, Fiorilli S, Quadros P, Azevedo A, Coelho C, Vitale-Brovarone C, Camarero-Espinosa S, Moroni L. Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration. Biomaterials Advances 2023; 3(29):213406. https://doi.org/10.1016/j.bioadv.2023.213406
31. Beeren IAO, Dijkstra PJ, Lourenço AFH, Sinha R, Gomes DB, Liu H, Bouvy N, Baker M B, Camarero-Espinosa S, Moroni L. Installation of click-type functional groups enable the creation of an additive manufactured construct for the osteochondral interface. Biofabrication 2023;15:014106. https://doi.org/10.1088/1758-5090/aca3d4
30. Beeren IAO , Dijkstra PJ, Massonnet P, Camarero-Espinosa S, Baker MB, Moroni L. Controlling tosylation versus chlorination during end group modification of PCL. European Polymer Journal 2022;180:111576. https://doi.org/10.1016/j.eurpolymj.2022.111576
29. Kuhnt T†, Camarero-Espinosa S†, Takhsha Ghahfarokhi M, Arreguín M, Cabassi R, Albertini F, et al. 4D Printed Shape Morphing Biocompatible Materials Based on Anisotropic Ferromagnetic Nanoparticles. Advanced Functional Materials;n/a:2202539. https://doi.org/10.1002/adfm.202202539
28. Camarero-Espinosa S, Carlos-Oliveira M, Liu H, Mano JF, Bouvy N, Moroni L. 3D Printed Dual-Porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Advanced Healthcare Materials 2022;11:2101415. https://doi.org/10.1002/adhm.202101415
27. Orellano MS, Sanz O, Camarero-Espinosa S, Beloqui A, Calderón M. Recent advances and future perspectives of porous materials for biomedical applications. Nanomedicine 2022;17:197-200. https://doi.org/10.2217/nnm-2021-0436
26. Montalbano G, Tomasina C, Fiorilli S, Camarero-Espinosa S, Vitale-Brovarone C, Moroni L. Biomimetic Scaffolds Obtained by Electrospinning of Collagen-Based Materials: Strategies to Hinder the Protein Denaturation. Materials 2021;14:4360. https://doi.org/10.3390/ma14164360
25. Iturriaga L, Van Gordon KD, Larrañaga-Jaurrieta G, Camarero-Espinosa S. Strategies to Introduce Topographical and Structural Cues in 3D-Printed Scaffolds and Implications in Tissue Regeneration. Advanced NanoBiomed Research 2021;1:2100068. https://doi.org/10.1002/anbr.202100068
24. Kuhnt T, Camarero-Espinosa S. Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydrate Polymers 2021;252:117159. https://doi.org/10.1016/j.carbpol.2020.117159
23. Camarero-Espinosa S, Moroni L. Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nature Communications 2021;12:1031. https://doi.org/10.1038/s41467-021-21325-x
22. Zonderland J, Gomes DB, Pallada Y, Moldero IL, Camarero-Espinosa S, Moroni L. Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells. STEM CELLS 2020;38:948-59. https://doi.org/10.1002/stem.3198
21. Sinha R, O'Brien FJ, Camarero-Espinosa S. Editorial: Novel Composites and Multi-Material Assembly Approaches for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology 2020;8. https://doi.org/10.3389/fbioe.2020.00680
20. Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chemical Reviews 2020;120:10547-607. https://doi.org/10.1021/acs.chemrev.9b00789
19. Camarero-Espinosa S, Tomasina C, Calore A, Moroni L. Additive manufactured, highly resilient, elastic, and biodegradable poly(ester)urethane scaffolds with chondroinductive properties for cartilage tissue engineering. Materials Today Bio 2020;6:100051. https://doi.org/10.1016/j.mtbio.2020.100051
18. Camarero-Espinosa S, Calore A, Wilbers A, Harings J, Moroni L. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Acta Biomaterialia 2020;102:192-204. https://doi.org/10.1016/j.actbio.2019.11.041
17. Camarero-Espinosa S, Cooper-White JJ. Combinatorial presentation of cartilage-inspired peptides on nanopatterned surfaces enables directed differentiation of human mesenchymal stem cells towards distinct articular chondrogenic phenotypes. Biomaterials 2019;210:105-15. https://doi.org/10.1016/j.biomaterials.2019.04.003
16. Tomasina C, Bodet T, Mota C, Moroni L, Camarero-Espinosa S. Bioprinting Vasculature: Materials, Cells and Emergent Techniques. . Materials 2019;12:2701. https://doi.org/10.3390/ma12172701
15. Kuhnt T, Marroquín García R, Camarero-Espinosa S, Dias A, ten Cate AT, van Blitterswijk CA, et al. Poly(caprolactone-co-trimethylenecarbonate) urethane acrylate resins for digital light processing of bioresorbable tissue engineering implants. Biomaterials Science 2019;7:4984-9. https://doi.org/10.1039/C9BM01042D
14. Gonçalves de Pinho AR, Odila I, Leferink A, van Blitterswijk C, Camarero-Espinosa S, Moroni L. Hybrid Polyester-Hydrogel Electrospun Scaffolds for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology 2019;7. https://doi.org/10.3389/fbioe.2019.00231
13. Frost BA, Camarero-Espinosa S, Foster EJ. Materials for the Spine: Anatomy, Problems, and Solutions. . Materials 2019, 2019;12:53. https://doi.org/10.3390/ma12020253
12. Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, et al. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews 2018;47:2609-79. https://doi.org/10.1039/C6CS00895J
11. Camarero-Espinosa S, Stefani I, Cooper-White J. Hierarchical “As-Electrospun” Self-Assembled Fibrous Scaffolds Deconvolute Impacts of Chemically Defined Extracellular Matrix- and Cell Adhesion-Type Interactions on Stem Cell Haptokinesis. ACS Macro Letters 2017;6:1420-5. https://doi.org/10.1021/acsmacrolett.7b00834
10. Di Luca A, de Wijn JR, van Blitterswijk CA, Camarero-Espinosa S, Moroni L. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation. Macromol Rapid Commun 2017;38:1700186-n/a. https://doi.org/10.1002/marc.201700186
9. Camarero-Espinosa S, Cooper-White J. Tailoring biomaterial scaffolds for osteochondral repair. International Journal of Pharmaceutics 2017;523:476-89. https://doi.org/10.1016/j.ijpharm.2016.10.035
8. Endes C, Camarero-Espinosa S, Mueller S, Foster EJ, Petri-Fink A, Rothen-Rutishauser B, et al. A critical review of the current knowledge regarding the biological impact of nanocellulose. Journal of Nanobiotechnology 2016;14:78. https://doi.org/10.1186/s12951-016-0230-9
7. Camarero-Espinosa S, Endes C, Mueller S, Petri-Fink A, Rothen-Rutishauser B, Weder C. Elucidating the potential biological impact of cellulose nanocrystals. Fibers 2016;4. https://doi.org/10.3390/fib4030021
6. Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomaterials Science 2016;4:734-67. https://doi.org/10.1039/C6BM00068A
5. Camarero-Espinosa S, Rothen-Rutishauser B, Weder C, Foster EJ. Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering. Biomaterials 2016;74:42-52. https://doi.org/10.1016/j.biomaterials.2015.09.033
4. Camarero-Espinosa S, Boday DJ, Weder C, Foster EJ. Cellulose nanocrystal driven crystallization of poly(d,l-lactide) and improvement of the thermomechanical properties. Journal of Applied Polymer Science 2015;132:41607. https://doi.org/10.1002/app.41607
3. Endes C, Schmid O, Kinnear C, Mueller S, Camarero-Espinosa S, Vanhecke D, et al. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Particle and Fibre Toxicology 2014;11:40. https://doi.org/10.1186/s12989-014-0040-x
2. Sonseca Á, Camarero-Espinosa S, Peponi L, Weder C, Foster EJ, Kenny JM, et al. Mechanical and shape-memory properties of poly(mannitol sebacate)/cellulose nanocrystal nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry 2014;52:3123-33. https://doi.org/10.1002/pola.27367
1. Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 2013;14:1223-30. https://doi.org/10.1021/bm400219u
Copyright © All Rights Reserved
Disclaimer: This website is responsibility of Dr. Sandra Camarero-Espinosa. POLYMAT and the University of The Basque Country (UPV/EHU) are not responsible for its content. Reproduction in whole or in part of this website is prohibited without the written consent of Dr. Camarero-Espinosa. Copyright © 2022 BioSmarTE Group.