For a full list of publications, please, follow the link.
41. Camarero-Espinosa S, Moroni L. 3D Niche-Inspired Scaffolds as a Stem Cell Delivery System for the Regeneration of the Osteochondral Interface. Advanced Materials n/a (n/a), 2310258. https://doi.org/10.1002/adma.202310258
40. Kathami N, Moreno-Vicente C, Martín P, Vergara-Arce JA, Ruiz-Hernández R, Gerovska D, Aransay AM, Araúzo-Bravo MJ, Camarero-Espinosa S, Abarrategi A. rhBMP-2 induces terminal differentiation of human bone marrow mesenchymal stromal cells only by synergizing with other signals. Stem cell research & therapy, 2024. 15 (1), 124. https://doi.org/10.1186/s13287-024-03735-y
39. Tomasina C, Mohren R, Camarero-Espinosa S, Cillero-Pastor B, Moroni L. A Proteomic Approach to Determine Stem Cell Skeletal Differentiation Signature on Additive Manufactured Scaffolds. Small Science, 2024. 4 (7), 2300316. https://doi.org/10.1002/smsc.202300316
38. Beeren IAO, dos Santos G, Dijkstra PJ, Mota C , Bauer J, Ferreira H, Reis RL, Neves NM, Camarero-Espinosa S, Baker MB, Moroni L. A facile strategy for tuning the density of surface-grafted biomolecules formelt extrusion-based additive manufacturing applications. Bio-design and Manufacturing, 2024. 7 (3), 277-291. https://doi.org/10.1007/s42242-024-00286-2
37. Asadian M, Tomasina C, Onyshchenko Y, Vin Chan K, Norouzi M, Zonderland J, Camarero‐Espinosa S, Morent R, De Geyter N, Moroni L. The role of plasma‐induced surface chemistry on polycaprolactone nanofibers to direct chondrogenic differentiation of human mesenchymal stem cells. Journal of Biomedical Materials Research: Part A, 2024. 112 (2) 1:21. https://doi.org/10.1002/jbm.a.37607
36. Khatami N, Guerrero P, Martín P, Quintela E, Ramos V, Saa L, Cortajarena AL, de la Caba K, Camarero-Espinosa S, Abarrategi A. Valorization of biological waste from insect-based food industry: Assessment of chitin and chitosan potential. Carbohydrate Polymers, 2023. 324: 121529. https://doi.org/10.1016/j.carbpol.2023.121529
35. Olmos-Juste R, Larrañaga-Jaurrieta G , Larraza I, Ramos-Diez S, Camarero-Espinosa S, Gabilondo N, Eceiza A. Alginate-waterborne polyurethane 3D bioprinted scaffolds for articular cartilage tissue engineering. International Journal of Biological Macromolecules, 2023. 253:127070. https://doi.org/10.1016/j.ijbiomac.2023.127070
34. Ramos-Díez S, Larrañaga-Jaurrieta G, Iturriaga L, Abarrategi A, Camarero-Espinosa S. Low molecular weight poly ((d, l)-lactide-co-caprolactone) liquid inks for diluent-free DLP printing of cell culture platforms. RSC Biomaterials Science 2023; 11(15):5163. https://doi.org/10.1039/D3BM00581J
33. Camarero‐Espinosa S, Yuan H, Emans PJ, Moroni L. Mimicking the graded wavy structure of anterior cruciate ligament. Advanced Healthcare Materials 2023; 2203023. https://doi.org/10.1002/adhm.202203023
32. Tomasina C, Montalbano G, Fiorilli S, Quadros P, Azevedo A, Coelho C, Vitale-Brovarone C, Camarero-Espinosa S, Moroni L. Incorporation of strontium-containing bioactive particles into PEOT/PBT electrospun scaffolds for bone tissue regeneration. Biomaterials Advances 2023; 3(29):213406. https://doi.org/10.1016/j.bioadv.2023.213406
31. Beeren IAO, Dijkstra PJ, Lourenço AFH, Sinha R, Gomes DB, Liu H, Bouvy N, Baker M B, Camarero-Espinosa S, Moroni L. Installation of click-type functional groups enable the creation of an additive manufactured construct for the osteochondral interface. Biofabrication 2023;15:014106. https://doi.org/10.1088/1758-5090/aca3d4
30. Beeren IAO , Dijkstra PJ, Massonnet P, Camarero-Espinosa S, Baker MB, Moroni L. Controlling tosylation versus chlorination during end group modification of PCL. European Polymer Journal 2022;180:111576. https://doi.org/10.1016/j.eurpolymj.2022.111576
29. Kuhnt T†, Camarero-Espinosa S†, Takhsha Ghahfarokhi M, Arreguín M, Cabassi R, Albertini F, et al. 4D Printed Shape Morphing Biocompatible Materials Based on Anisotropic Ferromagnetic Nanoparticles. Advanced Functional Materials;n/a:2202539. https://doi.org/10.1002/adfm.202202539
28. Camarero-Espinosa S, Carlos-Oliveira M, Liu H, Mano JF, Bouvy N, Moroni L. 3D Printed Dual-Porosity Scaffolds: The Combined Effect of Stiffness and Porosity in the Modulation of Macrophage Polarization. Advanced Healthcare Materials 2022;11:2101415. https://doi.org/10.1002/adhm.202101415
27. Orellano MS, Sanz O, Camarero-Espinosa S, Beloqui A, Calderón M. Recent advances and future perspectives of porous materials for biomedical applications. Nanomedicine 2022;17:197-200. https://doi.org/10.2217/nnm-2021-0436
26. Montalbano G, Tomasina C, Fiorilli S, Camarero-Espinosa S, Vitale-Brovarone C, Moroni L. Biomimetic Scaffolds Obtained by Electrospinning of Collagen-Based Materials: Strategies to Hinder the Protein Denaturation. Materials 2021;14:4360. https://doi.org/10.3390/ma14164360
25. Iturriaga L, Van Gordon KD, Larrañaga-Jaurrieta G, Camarero-Espinosa S. Strategies to Introduce Topographical and Structural Cues in 3D-Printed Scaffolds and Implications in Tissue Regeneration. Advanced NanoBiomed Research 2021;1:2100068. https://doi.org/10.1002/anbr.202100068
24. Kuhnt T, Camarero-Espinosa S. Additive manufacturing of nanocellulose based scaffolds for tissue engineering: Beyond a reinforcement filler. Carbohydrate Polymers 2021;252:117159. https://doi.org/10.1016/j.carbpol.2020.117159
23. Camarero-Espinosa S, Moroni L. Janus 3D printed dynamic scaffolds for nanovibration-driven bone regeneration. Nature Communications 2021;12:1031. https://doi.org/10.1038/s41467-021-21325-x
22. Zonderland J, Gomes DB, Pallada Y, Moldero IL, Camarero-Espinosa S, Moroni L. Mechanosensitive regulation of stanniocalcin-1 by zyxin and actin-myosin in human mesenchymal stromal cells. STEM CELLS 2020;38:948-59. https://doi.org/10.1002/stem.3198
21. Sinha R, O'Brien FJ, Camarero-Espinosa S. Editorial: Novel Composites and Multi-Material Assembly Approaches for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology 2020;8. https://doi.org/10.3389/fbioe.2020.00680
20. Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: From Tissue and Organ Development to in Vitro Models. Chemical Reviews 2020;120:10547-607. https://doi.org/10.1021/acs.chemrev.9b00789
19. Camarero-Espinosa S, Tomasina C, Calore A, Moroni L. Additive manufactured, highly resilient, elastic, and biodegradable poly(ester)urethane scaffolds with chondroinductive properties for cartilage tissue engineering. Materials Today Bio 2020;6:100051. https://doi.org/10.1016/j.mtbio.2020.100051
18. Camarero-Espinosa S, Calore A, Wilbers A, Harings J, Moroni L. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Acta Biomaterialia 2020;102:192-204. https://doi.org/10.1016/j.actbio.2019.11.041
17. Camarero-Espinosa S, Cooper-White JJ. Combinatorial presentation of cartilage-inspired peptides on nanopatterned surfaces enables directed differentiation of human mesenchymal stem cells towards distinct articular chondrogenic phenotypes. Biomaterials 2019;210:105-15. https://doi.org/10.1016/j.biomaterials.2019.04.003
16. Tomasina C, Bodet T, Mota C, Moroni L, Camarero-Espinosa S. Bioprinting Vasculature: Materials, Cells and Emergent Techniques. . Materials 2019;12:2701. https://doi.org/10.3390/ma12172701
15. Kuhnt T, Marroquín García R, Camarero-Espinosa S, Dias A, ten Cate AT, van Blitterswijk CA, et al. Poly(caprolactone-co-trimethylenecarbonate) urethane acrylate resins for digital light processing of bioresorbable tissue engineering implants. Biomaterials Science 2019;7:4984-9. https://doi.org/10.1039/C9BM01042D
14. Gonçalves de Pinho AR, Odila I, Leferink A, van Blitterswijk C, Camarero-Espinosa S, Moroni L. Hybrid Polyester-Hydrogel Electrospun Scaffolds for Tissue Engineering Applications. Frontiers in Bioengineering and Biotechnology 2019;7. https://doi.org/10.3389/fbioe.2019.00231
13. Frost BA, Camarero-Espinosa S, Foster EJ. Materials for the Spine: Anatomy, Problems, and Solutions. . Materials 2019, 2019;12:53. https://doi.org/10.3390/ma12020253
12. Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, et al. Current characterization methods for cellulose nanomaterials. Chemical Society Reviews 2018;47:2609-79. https://doi.org/10.1039/C6CS00895J
11. Camarero-Espinosa S, Stefani I, Cooper-White J. Hierarchical “As-Electrospun” Self-Assembled Fibrous Scaffolds Deconvolute Impacts of Chemically Defined Extracellular Matrix- and Cell Adhesion-Type Interactions on Stem Cell Haptokinesis. ACS Macro Letters 2017;6:1420-5. https://doi.org/10.1021/acsmacrolett.7b00834
10. Di Luca A, de Wijn JR, van Blitterswijk CA, Camarero-Espinosa S, Moroni L. Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation. Macromol Rapid Commun 2017;38:1700186-n/a. https://doi.org/10.1002/marc.201700186
9. Camarero-Espinosa S, Cooper-White J. Tailoring biomaterial scaffolds for osteochondral repair. International Journal of Pharmaceutics 2017;523:476-89. https://doi.org/10.1016/j.ijpharm.2016.10.035
8. Endes C, Camarero-Espinosa S, Mueller S, Foster EJ, Petri-Fink A, Rothen-Rutishauser B, et al. A critical review of the current knowledge regarding the biological impact of nanocellulose. Journal of Nanobiotechnology 2016;14:78. https://doi.org/10.1186/s12951-016-0230-9
7. Camarero-Espinosa S, Endes C, Mueller S, Petri-Fink A, Rothen-Rutishauser B, Weder C. Elucidating the potential biological impact of cellulose nanocrystals. Fibers 2016;4. https://doi.org/10.3390/fib4030021
6. Camarero-Espinosa S, Rothen-Rutishauser B, Foster EJ, Weder C. Articular cartilage: from formation to tissue engineering. Biomaterials Science 2016;4:734-67. https://doi.org/10.1039/C6BM00068A
5. Camarero-Espinosa S, Rothen-Rutishauser B, Weder C, Foster EJ. Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering. Biomaterials 2016;74:42-52. https://doi.org/10.1016/j.biomaterials.2015.09.033
4. Camarero-Espinosa S, Boday DJ, Weder C, Foster EJ. Cellulose nanocrystal driven crystallization of poly(d,l-lactide) and improvement of the thermomechanical properties. Journal of Applied Polymer Science 2015;132:41607. https://doi.org/10.1002/app.41607
3. Endes C, Schmid O, Kinnear C, Mueller S, Camarero-Espinosa S, Vanhecke D, et al. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Particle and Fibre Toxicology 2014;11:40. https://doi.org/10.1186/s12989-014-0040-x
2. Sonseca Á, Camarero-Espinosa S, Peponi L, Weder C, Foster EJ, Kenny JM, et al. Mechanical and shape-memory properties of poly(mannitol sebacate)/cellulose nanocrystal nanocomposites. Journal of Polymer Science Part A: Polymer Chemistry 2014;52:3123-33. https://doi.org/10.1002/pola.27367
1. Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 2013;14:1223-30. https://doi.org/10.1021/bm400219u
Copyright © All Rights Reserved
Disclaimer: This website is responsibility of Dr. Sandra Camarero-Espinosa. POLYMAT and the University of The Basque Country (UPV/EHU) are not responsible for its content. Reproduction in whole or in part of this website is prohibited without the written consent of Dr. Camarero-Espinosa. Copyright © 2022 BioSmarTE Group.